单源最短路: 求一个点到其他点的最短路
多源最短路: 求任意两个点的最短路

稠密图用邻接矩阵存,稀疏图用邻接表存储。

稠密图: m 和 n2 一个级别
稀疏图: m 和 n 一个级别

朴素dij:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
int n,m,s,a,b,c;
const int N=100010;
struct edge{int v,w;};
vector<edge> e[N];
int d[N], vis[N];

void dijkstra(int s){
for(int i=0;i<=n;i++)d[i]=inf;
d[s]=0;
for(int i=1;i<n;i++){//枚举次数
int u=0;
for(int j=1;j<=n;j++)//枚举点
if(!vis[j]&&d[j]<d[u]) u=j;
vis[u]=1; //标记u已出圈
for(auto ed:e[u]){//枚举邻边
int v=ed.v, w=ed.w;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
}
}
}
}
int main(){
cin>>n>>m>>s;
for(int i=0; i<m; i++){
cin>>a>>b>>c;
e[a].push_back({b,c});
}
dijkstra(s);
for(int i=1;i<=n;i++)
printf("%d ",d[i]);
return 0;
}

堆优化版dij

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
//堆优化Dijkstra 

#define pii pair<int,int>
struct edge {
int v, w;
};
vector<int> dijs(vector<vector<edge>>& e, int s) {
priority_queue<pii, vector<pii>, greater<pii>> q;
vector<int> d(n + 1, (1LL<<31)-1);
vector<bool> vis(n + 1);
d[s] = 0;
q.push({d[s],s});
while (q.size()) {
auto t = q.top();
q.pop();
int u = t.sec;
if (vis[u])
continue; // 再进队就直接跳过
vis[u] = 1; // 标记u已出队
deb(u);
for (auto [v, w] : e[u]) {
deb(v,w);
if (d[v] > d[u] + w) {
d[v] = d[u] + w;
q.push({d[v], v}); // 小根堆
}
}

}
return d;
}

#最简单处理带负权边的最短路

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
void floyd()
{

for (int k = 1; k <= n; k ++ )
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
init(){
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
if (i == j) d[i][j] = 0;
else d[i][j] = INF;
}
存边方式: d[a][b] = min(d[a][b], w);
# 如果是无向边需要加d[b][a]

处理负权边

有边数限制(1 号点到 n 号点的最多经过 k 条边的最短距离。)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
const int N = 510, M = 10010;
struct Edge
{
int a, b, c;
}edges[M];

int n, m, k;
int dist[N];
int last[N];

void bellman_ford()
{
memset(dist, 0x3f, sizeof dist);

dist[1] = 0;
for (int i = 0; i < k; i ++ )
{
memcpy(last, dist, sizeof dist);//每次只多加一个点,防止串联更新
for (int j = 0; j < m; j ++ )
{
auto e = edges[j];
dist[e.b] = min(dist[e.b], last[e.a] + e.c);
}
}
}

int main()
{
scanf("%d%d%d", &n, &m, &k);

for (int i = 0; i < m; i ++ )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
edges[i] = {a, b, c};
}

bellman_ford();

if (dist[n] > 0x3f3f3f3f / 2) puts("impossible");//即使不连通也可能会被轻微更新,只要在无穷大数量级数说明不可达
else printf("%d\n", dist[n]);

return 0;
}

在遇到负权的时候才考虑spfa,很容易被卡

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
const int N = 100010;

int n, m;
int h[N], w[N], e[N], ne[N], idx;
int dist[N];
bool st[N];

void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

int spfa()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;

queue<int> q;
q.push(1);
st[1] = true;

while (q.size())
{
int t = q.front();
q.pop();

st[t] = false;//可能二次入队,所以要还原。因为入队都是被更新的,所以其要二次更新它能到的点。

for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if (!st[j])
{
q.push(j);
st[j] = true;
}
}
}
}

return dist[n];
}

int main()
{
scanf("%d%d", &n, &m);

memset(h, -1, sizeof h);

while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}

int t = spfa();

if (t == 0x3f3f3f3f) puts("impossible");
else printf("%d\n", t);

return 0;
}