
单源最短路: 求一个点到其他点的最短路
多源最短路: 求任意两个点的最短路
稠密图用邻接矩阵存,稀疏图用邻接表存储。
稠密图: m 和 n2 一个级别
稀疏图: m 和 n 一个级别
朴素dij:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
| int n,m,s,a,b,c; const int N=100010; struct edge{int v,w;}; vector<edge> e[N]; int d[N], vis[N];
void dijkstra(int s){ for(int i=0;i<=n;i++)d[i]=inf; d[s]=0; for(int i=1;i<n;i++){//枚举次数 int u=0; for(int j=1;j<=n;j++)//枚举点 if(!vis[j]&&d[j]<d[u]) u=j; vis[u]=1; //标记u已出圈 for(auto ed:e[u]){//枚举邻边 int v=ed.v, w=ed.w; if(d[v]>d[u]+w){ d[v]=d[u]+w; } } } } int main(){ cin>>n>>m>>s; for(int i=0; i<m; i++){ cin>>a>>b>>c; e[a].push_back({b,c}); } dijkstra(s); for(int i=1;i<=n;i++) printf("%d ",d[i]); return 0; }
|
堆优化版dij
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| //堆优化Dijkstra
#define pii pair<int,int> struct edge { int v, w; }; vector<int> dijs(vector<vector<edge>>& e, int s) { priority_queue<pii, vector<pii>, greater<pii>> q; vector<int> d(n + 1, (1LL<<31)-1); vector<bool> vis(n + 1); d[s] = 0; q.push({d[s],s}); while (q.size()) { auto t = q.top(); q.pop(); int u = t.sec; if (vis[u]) continue; // 再进队就直接跳过 vis[u] = 1; // 标记u已出队 deb(u); for (auto [v, w] : e[u]) { deb(v,w); if (d[v] > d[u] + w) { d[v] = d[u] + w; q.push({d[v], v}); // 小根堆 } } } return d; }
|
#最简单处理带负权边的最短路
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
| void floyd() {
for (int k = 1; k <= n; k ++ ) for (int i = 1; i <= n; i ++ ) for (int j = 1; j <= n; j ++ ) d[i][j] = min(d[i][j], d[i][k] + d[k][j]); } init(){ for (int i = 1; i <= n; i ++ ) for (int j = 1; j <= n; j ++ ) if (i == j) d[i][j] = 0; else d[i][j] = INF; } 存边方式: d[a][b] = min(d[a][b], w); # 如果是无向边需要加d[b][a]
|
处理负权边
有边数限制(1 号点到 n 号点的最多经过 k 条边的最短距离。)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
| const int N = 510, M = 10010; struct Edge { int a, b, c; }edges[M];
int n, m, k; int dist[N]; int last[N];
void bellman_ford() { memset(dist, 0x3f, sizeof dist);
dist[1] = 0; for (int i = 0; i < k; i ++ ) { memcpy(last, dist, sizeof dist);//每次只多加一个点,防止串联更新 for (int j = 0; j < m; j ++ ) { auto e = edges[j]; dist[e.b] = min(dist[e.b], last[e.a] + e.c); } } }
int main() { scanf("%d%d%d", &n, &m, &k);
for (int i = 0; i < m; i ++ ) { int a, b, c; scanf("%d%d%d", &a, &b, &c); edges[i] = {a, b, c}; }
bellman_ford();
if (dist[n] > 0x3f3f3f3f / 2) puts("impossible");//即使不连通也可能会被轻微更新,只要在无穷大数量级数说明不可达 else printf("%d\n", dist[n]);
return 0; }
|
在遇到负权的时候才考虑spfa,很容易被卡
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
| const int N = 100010;
int n, m; int h[N], w[N], e[N], ne[N], idx; int dist[N]; bool st[N];
void add(int a, int b, int c) { e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ; }
int spfa() { memset(dist, 0x3f, sizeof dist); dist[1] = 0;
queue<int> q; q.push(1); st[1] = true;
while (q.size()) { int t = q.front(); q.pop();
st[t] = false;//可能二次入队,所以要还原。因为入队都是被更新的,所以其要二次更新它能到的点。
for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (dist[j] > dist[t] + w[i]) { dist[j] = dist[t] + w[i]; if (!st[j]) { q.push(j); st[j] = true; } } } }
return dist[n]; }
int main() { scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
while (m -- ) { int a, b, c; scanf("%d%d%d", &a, &b, &c); add(a, b, c); }
int t = spfa();
if (t == 0x3f3f3f3f) puts("impossible"); else printf("%d\n", t);
return 0; }
|